
IDEMPOTENT METHODS FOR CONTROL AND GAMES

WILLIAM MCENEANEY

UNIVERSITY OF CALIFORNIA, SAN DIEGO

09/10/2013
Final Report 

DISTRIBUTION A: Distribution approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSL

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

AFRL-OSR-VA-TR-2013-0492

Page 1 of 1

9/17/2013file://\\52zhtv-fs-725v\CStemp\adlib\input\wr_export_130917101852_1868311565...



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
 

2. REPORT TYPE 
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
 

b. ABSTRACT 
 

c. THIS PAGE 
 

  
 

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18 

05-09-2013 Final 01-06-2010 - 31-05-2013

Idempotent Methods for Control and Games

FA9550-10-1-0233

Prof. William M. McEneaney

University of California San Diego 
9500 Gilman Dr. 
La Jolla, CA 92093

AFOSR

Public Release

Research into application of max-plus (and mode general idempotent) algebra based methods for solution of nonlinear control 
and estimation problems was undertaken. Such problems are typically solved via the method of dynamic programming, which 
converts the problems into partial differential equations (PDEs). However that approach is subject to the well-known 
curse-of-dimensionality when classical grid-based methods are applied to solve the PDEs. The term "curse-of-dimensionality" 
refers to the fact that the computational complexity grows exponentially fast as the dimension of the state space increases, and 
has typically forbidden the use of such approaches to real-world applications for well over a half-century. The methods 
developed in this effort are not subject to the that tremendous computational complexity growth. They are subject to a certain 
curse-of -complexity; however that is addressed via optimal idempotent projections, which may be instantiated as pruning 
operations. Specific research topics addressed include extension of these methods to nonlinear stochastic control problems, 
nonlinear robust estimation problems, quantum-spin control, certain classes of dynamic games, and solution of classes of 
linear, infinite-dimensional control problems.



Final Report:

AFOSR Grant FA9550-10-1-0233

Idempotent Methods for Control and Games

William M. McEneaney

Dept. of Mechanical and Aerospace Engineering
University of California San Diego

La Jolla, CA 92093-0411
USA

wmceneaney@ucsd.edu

1



1 Researchers Involved:

• UCSD Personnel:

– Prof. William M. McEneaney (PI)

– Dr. Srinivas Sridharan (Post-Doc., approx. 5/11-3/13, now Ecole
Nat. Sup. Tech. Av.)

• Collaborators (not funded):

– Prof. Peter Dower (Univ. of Melbourne)

– Prof. Stephane Gaubert (Ecole Polytechnic)

– Prof. Hidehiro Kasai (Osaka Univ.)

• Graduate Students and Graduate-Student/Post-Doc Level Visitors:

– Seung Hak Han (UCSD, Expected Ph.D. date: 6/2014)

– Minyi Ji (UCSD M.S. 2013)

– Dr. Ali Oran (UCSD Ph.D. 2010, now Singapore-MIT Alliance
for Res. and Tech.)

– Dr. Ameet Deshpande (UCSD Ph.D. 2009, now GE Research)

– Dr. Abhijit Kallapur, (Post-doc., Univ. of New South Wales)

– Dr. Samira Farahani (Ph.D. 2012, T.U. Delft, now Allseas)

– Zheng Qu (Ecole Polytechnic, Expected Ph.D. date: 12/2013)

– Antoine Desir (Ecole Polytechnic, now Columbia Univ.)

2 Introduction

Multiple advances were made during the period of the effort. The discussion
of such is subdivided by research area below.
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3 Max-Plus Methods for Nonlinear Control

and Estimation

During this period, efforts on curse-of-dimensionality-free methods based on
the max-plus algebra were expanded in several directions. The initial efforts
focused on a single class of problems: infinite time-horizon problems where
the active control represented an opposing L2-disturbance process. For rea-
sons of applicability, during this effort, development of the theory necessary
to cover wider classes of problems was undertaken. Research in determining
the underlying structures which allow phenomenal increases in computational
speed for certain classes of problems also continued [16]. Below, we indicate
the advances on some aspects of this branch of the research effort.

3.1 Curse of Dimensionality Free Methods for Contin-
uous-Time Stochastic Control

One component of the effort has been in expansion of the applicability of
max-plus curse-of-dimensionality-free methods to cover problems in stochas-
tic control. As indicated above, it is now well-known that many classes of
deterministic control problems may be solved by max-plus or min-plus (more
generally, idempotent) numerical methods. These methods include max-plus
basis-expansion approaches [1], [2], [13], [44], as well as the more recently de-
veloped curse-of-dimensionality-free methods [44], [43]. It has recently been
discovered that idempotent methods are applicable to stochastic control and
games. The methods are related to the above curse-of-dimensionality-free
methods for deterministic control. In particular, a min-plus based method
was found for stochastic control problems [30, 48].

The first such methods for stochastic control were developed only for
discrete-time problems. The key tools enabling their development were the
idempotent distributive property and the fact that certain solution forms are
retained through application of the semigroup operator (i.e., the dynamic
programming principle operator). In particular, under certain conditions,
pointwise minima of affine and quadratic forms pass through this operator.
As the operator contains an expectation component, this requires applica-
tion of the idempotent distributive property. In the case of finite sums and
products, this property looks like our standard-algebra distributive property;
in the continuum case, it is familiar to control theorists through notions of
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strategies, non-anticipative mappings and/or progressively measurable con-
trols. Using this technology, the value function can be propagated backwards
with a representation as a pointwise minimum of quadratic or affine forms.

In the recent work, the severe restriction to discrete-time problems was
removed. This extension required us to overcome significant technical hur-
dles. Note that as these methods are related to the max-plus curse-of-
dimensionality-free methods of deterministic control, there is a discretiza-
tion over time, but not over space. One first defines a parameterized set
of operators, approximating the dynamic programming operator. Next, one
obtains the solutions to the problem of backward propagation by repeated
application of the approximating operators. These solutions are parameter-
ized by the time-discretization step size. Using techniques from the theory
of viscosity solutions, it is shown that the solutions converge to the viscosity
solution of the Hamilton-Jacobi-Bellman partial differential equation (HJB
PDE) associated with the original problem, and consequently to the value
function.

The problem is thereby reduced to backward propagation by these ap-
proximating operators. The min-plus distributive property is employed. A
generalization of this distributive property, applicable to continuum versions
is obtained. This allows interchange of expectation over normal random vari-
ables (and other random variables with range in IRm) with infimum opera-
tors. At each time-step, the solution is represented as an infimum over a set
of quadratic forms. Use of the min-plus distributive property allows one to
maintain that solution form as one propagates backward in time. Backward
propagation is reduced to simple standard-sense linear algebraic operations
for the coefficients in the representation. It is also demonstrated that the
assumptions on the representation which allow one to propagate backward
one step are inherited by the representation at the next step. The difficulty
with the approach is an extreme curse-of-complexity, wherein the number of
terms in the min-plus expansion grows very rapidly as one propagates. The
complexity growth is attenuated via projection onto a lower dimensional min-
plus subspace at each time step. At each step, one desires to project onto
the optimal subspace relative to the solution approximation. That is, the
subspace is not set a priori. In the discrete-time case, it was demonstrated
that for some problem classes, this approach might be superior to grid-based
methods [30].

The specific class of problems which were addressed are as follows. The

4



dynamics take the form

dξs = fµs(ξs, us) ds+ σµs(ξs, us) dBs, ξt = x ∈ IRn, (1)

where fm(x, u) is measurable. The us and µs are control inputs taking values
in U ⊂ IRp and M .

=]1,M [
.
= {1, 2, · · · ,M}, respectively. In practice, it is

useful to allow both a continuum-valued control component and a finite set-
valued component, where the latter is used to allow approximation of more
general nonlinear Hamiltonians, c.f. [44],[40] for motivation. Also, {B·,F·} is
an l-dimensional Brownian motion on the probability space (Ω,F , P ), where
F0 contains all the P -negligible elements of F and σm(x, u) is an n×l matrix-
valued diffusion coefficient.

The payoff (to be minimized) is

J(t, x, u·, µ·)
.
= E

{∫ T

t

lµs(ξs, us) ds+ Ψ(ξT )

}
where

Ψ(x)
.
= inf

zT∈Z′T
{gT (x, zT )} ,

where lm(x, u) and gT (x, zT ) are measurable, and (Z ′T , dZ′T ) is a separable
metric space. The value function is

V (t, x) = inf
u·∈Ut,µ·∈M̃t

J(t, x, u·, µ·), (2)

where Ut (resp.M̃t) is the set of Ft-progressively measurable controls, taking
values in U (resp.M) such that there exists a strong solution to (1). Fur-
ther assumptions, and the full theory and algorithm, may be found in the
references [24, 27, 31, 34].

3.2 Max-plus Methods in Estimation

The max-plus curse-of-dimensionality-free approach is also being extended
to problems in estimation, specifically for nonlinear estimation problems.
Robust approaches to estimation were explored heavily in the late 1990s,
c.f., [14, 50, 18, 52, 17]. Some initial efforts on application of max-plus
approaches to such appeared in [13, 51, 51]. With the development of curse-
of-dimensionality-free algorithms, it was decided to port over this new tech-
nology to the domain of robust nonlinear filtering.
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One class of problems that have been addressed is that of robust estima-
tion for problems in attitude estimation on SO(3), where SO(3) denotes the
special orthogonal group, which is a particularly useful means of describing
rotations of objects in IR3 and the dynamics thereof. As linear-dynamics
models are not appropriate, max-plus approaches may be particularly rele-
vant. As initial investigation into this domain appears in [57].

Anotehr area of investigation was in application of curse-of-dimensionality-
free methods to nonlinear robust estimation, particularly in tandem with the
set-valued estimation techniques of Petersen et al. This is documented in
[19].

3.3 Control of higher dimensional quantum systems

The curse-of-dimensionality-free approach was developed and tested on prob-
lems in the control of quantum spin, where the effort was concentrated on the
two-qubit problem, where the relevant state-space is special unitary group,
SU(4). This research is documented on [56, 59, 60].

We briefly indicate the basic problem. In general, the quantum systems
that were considered, evolve on the Lie group SU(2n) denoted also by G.
The system dynamics are given by

dU

dt
=

{
M0∑
k=1

vk(t)Hk

}
U, U ∈ G (3)

with initial condition, say U(r) = U0, and control, v ∈ Vg ⊂ L∞([0,∞);RM0).
In (3) H1, H2 . . . HM0 constitute a set of right invariant vector fields, which
correspond to the set of available one and two qubit Hamiltonians. The span
of the set {H1, H2 . . . HM0 } plus all possible Lie bracket operations thereof,
is assumed to be the Lie algebra g of the group G. It follows from these
assumptions that the time to move the state from the identity element to
any other point on the group, is bounded. Given a control signal v ∈ Vg and
an initial unitary U(r) = U0, the solution to (3) at time t will be denoted by
U(t; v, r, U0).

The class of problems of interest involves determining the optimal trajec-
tory to move between any two points in G while minimizing an associated
cost function, C̃0(·, ·). The first-passage time function between any two points
is denoted by t̂U1,U2(v) := inf{t > 0 : U(0) = U1, U(t) = U2}. The optimal
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control problem of evolving the state from U1 to U2 has a value function
given by

C̃0(U1, U2)
.
= inf

v∈Vg

{∫ t̂U1,U2
(v)

0

√
v(s)TRv(s) ds

}
Vg

.
=
{
v ∈ L∞([0,∞);RM0)

∣∣ |v(t)| = 1∀t ∈ [0,∞)
}
.

The (symmetric, positive-definite) weight matrix, R, reflects the relative dif-
ficulty of generating each element of the control vector. If R is diagonal then
it can be interpreted as a weight matrix where the diagonal terms are the
costs associated with the different control directions available.

One may approach the problem via the min-plus curse-of-dimensionality-
free framework. However as previous theory (c.f., [44]) did not consider
optimal cost functions with stopping time constraints, a relaxation was for-
mulated. The relaxation was generated by introducing a fixed terminal time,
T , and a terminal penalty cost to yield

J εs(U0, v) =

{∫ T

s

√
v(t)TRv(t) dt+

1

ε
ϕ(U(T ; v, s, U0))

}
(4)

Cε
s(U0) = inf

v∈Ve
g

J εs(U0, v),

where ϕ(·) is a continuous real valued non-negative function that is zero only
at the identity element. Obviously, the function penalizes terminal states
away from the identity. The control set Veg for this relaxed formulation is

defined as Veg
.
=
{
v ∈ L∞(0,∞); IRM0)

∣∣ ‖v(t)‖ ∈ {0, 1} ∀t ∈ [0,∞)
}

. This
extended control set, Veg , ensures that once the target set is reached, the cost
J εs(·) in (4) does not continue accruing. This extension of the control ensures
that the relaxed cost function converges to the original cost function [56].
The terminal cost was taken as

ϕ(U) = tr[(I − U)(I − U)†] = tr[2I − U − U †] = 2tr[I]− 2Re{tr[U ]}.

Convergence rates and error estimates are given in [56], while results also
appear in [59, 60].
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4 Payoff Suboptimality Induced by Approxi-

mation of the Hamiltonian

Max-plus curse-of-dimensionality-free methods for deterministic control prob-
lems are developed using an HJB PDE model corresponding to a control prob-
lem where one controller, the actual controller, takes values in IRn, while a
second is a switching controller, which transitions the system between vari-
ous quadratic models (with affine terms as well). The second controller may
be used a a means for approximating a general nonlinear Hamiltonian as a
pointwise maximum (or a pointwise minimum) of quadratic forms. Note that
any semiconvex [semiconcave] Hamiltonian may be expanded as a max-plus
[min-plus] linear combination of quadratic forms. This leads to the questions
regarding the difference between the solutions of two HJB PDEs, where one
is given as a maximum of quadratic forms. A more difficult question, and one
which has not previously been significantly addressed, regards estimation of
the difference between the payoff one would achieve from a controller based
on the original HJB PDE, and the payoff one would achieve with a controller
based on an approximating HJB PDE. This second question is quite a bit
more delicate that the first. Both are addressed in [23].

Specifically, the originating HJB PDE problem is given by:

0 = −H(x,∇V ) = − sup
w∈IRk

[f ′(x,w)∇V + l(x,w)] , V (0) = 0

where x ∈ IRn. More specifically, one seeks the particular viscosity solution
which is the value function of the optimal control problem with dynamics
and running cost

ξ̇t = f(ξt, wt)
.
= g(ξt) + σ(ξt)wt, ξ0 = x,

l(ξt, wt)
.
= L(ξt)−

γ2

2
|wt|2.

That is, the value function is

V̂ (x) = sup
w∈L2((0,∞);IRk)

sup
T<∞

∫ T

0

l(ξt, wt) dt.

The approximating HJB PDE is

0 = −H̃(x,∇V ) = −max
m∈M
{Hm(x,∇V )}, V (0) = 0
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where M = {1, 2 . . .M}, and the Hm take the form

Hm(x, p) = 1
2
x′Dmx+ 1

2γ2
p′σm(σm)′p+ (Amx)′p+ (lm1 )′x+ (lm2 )′p+ αm.

The associated approximating control problem is given by

Ṽ (x)
.
= sup

T<∞
sup
µ∈D∞

sup
w∈W

∫ T

0

Lµt(ξt)−
γ2

2
|wt|2 dt,

where

Lm(x) = 1
2
x′Dmx+ (lm1 )′x+ αm,

ξ̇ = Aµtξt + lµt2 + σµtwt, ξ0 = x,

and D∞ = {µ : [0,∞)→M| measurable }.
It is assumed that H and H̃ are close in the sense that there exists θ > 0

such that, for all x, p ∈ IRn such that H̃(x, p) ≤ 0, one has

H̃(x, p) ≤ H(x, p) ≤ H̃(x, p) + θ
[
|x|2 + |p|2

]
.

Note that the coefficient θ parameterizes the degree of closeness between H
and H̃. As we are dealing with max-plus vector spaces, H̃ approximates H
from below (c.f. [44]), and so this approximation assumption is one-sided.

One finds that the controller based on solution of the approximating HJB
PDE satisfies

lim
T→∞

∫ T

0

l(ξt, wt) dt ≥ V̂ (x)− θ(1 +K2
g )C2|x|2,

where more details may be found in [23].

5 Max-plus methods for solution of infinite-

dimensional Riccati equations

The objective of this portion of the effort is to generalize the approach of
[29] to classes of infinite dimensional integro-differential Riccati equations
[7], leading to a new fundamental solution for these classes of equations.
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As in the finite dimensional case [29], this fundamental solution is based
on the max-plus dual of the dynamic programming evolution operator (or
semigroup) of an associated control problem. Here, the fundamental solu-
tion developed is for a specific class of infinite-dimensional integro-differential
Riccati equations that was originally motivated by a related problem con-
cerning the amplification of optical signals in optical networks [8]. However,
the principle can easily be extended to other infinite dimensional Riccati
equations, such as those related to diffusion PDEs. See [10]. For the sake of
brevity, only the first class of problems is discussed here.

The specific class of Riccati equations considered takes the form of an
operator equation, given by

Ṗt = PtA+ A′Pt −∇′Pt − (∇′Pt)′ + Pt σ σ′Pt + C , (5)

where Pt is a time-indexed self-adjoint integral operator, with the specifics
of the remaining notation given in [9]. In terms of the operator kernel Pt
corresponding to integral operator Pt, an equivalent form of this equation
(with details of the notation also in [9]) is

Ṗt = PtA+ A′ Pt + ∂1Pt + ∂2Pt + (Pt σ)~ (σ′ Pt) + C. (6)

The theory yielding the aforementioned fundamental solution proceeds by
considering an associated infinite-dimensional optimal control problem de-
fined on a finite time horizon. This control problem is constructed such that
the associated value function exhibits quadratic growth with respect to the
state variable, where this growth is determined by the solution of the Riccati
equation in question. Specifically, the integral operator (or kernel thereof)
that generates this quadratic growth is the solution of the appropriate Riccati
equation. Propagation of the max-plus dual of the solution of this associated
control problem is used to characterize the fundamental solution.

In posing the optimal control problem, an appropriately generalized L2-
dissipative running cost is utilized, along with a quadratic terminal cost. This
cost is defined with respect to trajectories generated by a infinite dimensional
linear system. The optimal control problem enjoys an explicit solution, with
the value obtained being a quadratic functional. This value may be propa-
gated in time by the application of a dynamic programming evolution oper-
ator St, which is max-plus linear on a space of semiconvex functionals. By
taking the max-plus dual of this evolution operator, an analogous evolution
operator B⊕t may be defined in the dual space. That is, B⊕t propagates the
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dual of the value of the optimal control problem, and hence the solution of
the Riccati equation. Critically, this can be achieved for quite general ini-
tial conditions of the Riccati equation, thereby prescribing the fundamental
solution via B⊕t . Furthermore, as B⊕t is a max-plus integral operator, this
dual space propagation may be described in terms of the propagation of the
kernel Bt of B⊕t . As this propagation follows by a max-plus convolution of
quadratic functionals, an explicit computation for propagating Bt is rendered
possible. A recipe summarizing the overall approach is provided in [11] (see
also [9]).

The following example exhibits a significant reduction in computation
time for the solution of the Riccati equation, when compared with standard
integration techniques. A scalar-valued Riccati equation of the form (6) is
considered, in which A = −2, σ = 1/

√
2, C = 1/3. The spatial interval Λ

is defined by L = 2. The Riccati equation (6) is solved numerically via a
Runge-Kutta method (RK45) and via the dual-space propagation method.
Approximation errors were computed with respect to a fine grid RK45 com-
putation. These errors are illustrated in Figure 1 (scaled via the natural
logarithm), where a considerable computational advantage of the dual-space
propagation is demonstrated.

6 Min-max spaces and complexity reduction

in min-max expansions

In max-plus curse-of-dimensionality-free methods for solution of determinis-
tic nonlinear control problems, one uses the fact that the value function lies
in the space of semiconvex functions (in the case of maximizing controllers),
and approximates this value using a truncated max-plus basis expansion. In
some classes, the value function is actually convex, and then one specifically
approximates with suprema (i.e., max-plus sums) of affine functions. Note
that the space of convex functions is a max-plus linear space, or moduloid.
In extending those concepts to game problems, one finds a different function
space, and different algebra, to be appropriate. Specifically, one considers
functions which may be represented using infima (i.e., min-max sums) of
max-plus affine functions. It is natural to refer to the class of functions so
represented as the min-max linear space (or moduloid) of max-plus hypo-
convex functions. In this component of the effort, the space of max-plus

11



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−25

−20

−15

−10

−5

Log of computation time

L
o

g
 o

f 
e

rr
o

r

RK4 vs. dual−based propagation

 

 

RK45

Dual−space

Figure 1: Approximation error versus computation time for standard (RK45)
and dual-propagation methods.

hypo-convex functions was examined, as well as the associated notion of
duality and min-max basis expansions. With this, one can extend the curse-
of-dimensionality-free methods for solution of control problems, to solution
of zero-sum dynamic games. The critical step in such development is that of
finding reduced-complexity expansions which approximate a function as well
as possible. A solution to this complexity-reduction problem in the case of
min-max expansions was obtained. Some more detail is now given.

Certain function spaces (to be described below) may be spanned by infima
of max-plus affine functions, that is, any element of the space may be repre-
sented as an infimum of a set of max-plus affine functions. In the min-max
algebra (more properly, the min-max commutative semiring), the addition
and multiplication operations are defined as

a⊕∨b .= min{a, b}, a⊗∨b .= max{a, b},

operating on IR
.
= IR∪{−∞}∪{+∞}, where one may note +∞⊕∨b = b for

all b ∈ IR and −∞⊗∨b = b for all b ∈ IR. As usual, the max-plus algebra
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(more properly, the max-plus commutative semifield) is defined by

a⊕ b .= max{a, b}, a⊗ b .= a+ b,

operating on IR−
.
= IR ∪ {−∞}.

By definition, any function in a space spanned by infima of of max-plus
affine functions has an expansion, f(x) = infλ∈Λ ψλ(x), for some index set
Λ, where the ψλ are max-plus affine. If the expansion is guaranteed to be
countably infinite, one would write

f(x) = inf
i∈N

ψi(x) =
⊕
i∈N

∨ψi(x)
.
=
⊕
i∈N

∨ai ⊗ φi(x),

where the φi are max-plus linear. One may refer to this as a min-max basis
expansion, and think of the required set of such φi as a min-max basis for the
space. The max-plus analog of this concept consists of max-plus vector spaces
(more typically referred to as moduloids [3] or as idempotent semimodules
[5], [22]) and max-plus basis expansions. These are heavily employed in
max-plus methods for solution of HJB PDEs (c.f., [1], [2], [13], [44], [42]).

In the solution of stochastic control problems via the max-plus (or min-
plus) curse-of-dimensionality-free method [37], [30], [35], [47] (also, see Sec-
tion 3.1 above), an important question is how to represent a function as
closely as possible with a fixed number of such basis functions (a truncated
max-plus expansion). More specifically, given a function represented as a
max-plus sum (i.e., a pointwise maximum) of M (standard-algebra) affine
functions, one wants to find the set of N (with N < M) affine functions
whose max-plus sum best approximates the original max-plus sum from be-
low.

Consider a similar problem, but geared toward a game application (i.e.,
a max-plus stochastic control application [12]). See [36] for more detail on
the originating game problem application. In this case, given a set of M
max-plus affine functions, one would like to approximate their min-max sum
(i.e., pointwise minimum) from above with a set of N (N < M) max-plus
affine functions. It can be seen that this problem has the same abstract
form as the problem considered in [35], but here the standard and max-plus
algebras are replaced by the max-plus and min-max algebras, respectively.
The problem reduces to minimization of a max-plus hypo-convex monotonic
function over a max-plus cornice, where a cornice is a set formed from the
upward (or downward, as appropriate) cones of the points in the convex hull
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of a set of generating points and a function will be max-plus hypo-convex if
its hypograph is convex. For this problem class, one finds that the optimal
approximating set of N functions, consists of elements taken from the original
set of M functions. In other words, pruning is optimal, and represents the
optimal min-max projection onto a min-max space of dimension N .

Some additional remarks on this topic deserve mention. First, the space
of max-plus hypo-convex functions, also known as the space of sub-topical
functions [55], is the space of monotonically increasing (with respect to the
standard partial order on the domain) functions with Lipschitz constant one.
(There are obvious generalizations to any fixed Lipschitz constant, etc.) Sec-
ond, it was shown that the evaluation of any pruning option was remarkably
simple, requiring evaluation of the constituent max-plus affine functionals
only at the associated “crux points”. For more information, one may see
[15, 28, 36]
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